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Scope of this lecture

Basic understanding of :

 Atmospheric Modeling Principles

 Dust Models

 Model - Remote Sensing Synergies

 Evaluation

 Assimilation
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Storms – Hurricanes – Storm surge
Temporal resolution
Advanced Baseline Imager (ABI)

Hurricane Igor, 2010
 1min GOES-15
 15min GOES-13

Hurricane Igor (2010) Imagery curtesy of ASPB



Remote sensing for assimilation and validation of dust forecasts

Desert Dust Aerosol

Passive & active space-borne observations of dust

Mobilization of dust (Saltation & Bombardement mechanism) 

http://www.goes-r.gov/users/comet/EUMETSAT/at_dust/media/flash/aeolian.swf
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Dust - Haboobs
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Dust - Haboobs

Generation of haboobs by Mesoscale Convective Systems (MCS) 
MSG-SEVIRI dust product



Remote sensing for assimilation and validation of dust forecasts

Dust - Haboobs

Schematic diagram of a density current 
formation

Model reproduction of a density current 
formation and elevated dust concentration 

Adopted from Knippertz et al., 2007, JGR Adopted from Solomos et al., ACP, 2017 
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Introduction to Numerical Weather Prediction (NWP)



The history of the state of the model used by Lorenz can be represented 
as a trajectory in a three-dimensional space defined by the amplitudes of 
the model’s three dependent variables. Regime-like behavior is clearly 
apparent in this rendition. Oscillations around the two different “climate 
attractors” correspond to the two, distinctly different sets of spirals, 
which lie in two different planes in the three-dimensional phase space. 
Transitions between the two regimes occur relatively infrequently. 

Atmospheric motions are inherently unpredictable as an initial value
problem (i.e., as a system of equations integrated forward in time from
specified initial conditions) beyond a few weeks. Beyond that time frame,
uncertainties in the forecasts, no matter how small they might be in the
initial conditions, become as large as the observed variations in
atmospheric flow patterns. Such exquisite sensitivity to initial conditions
is characteristic of a broad class of mathematical models of real
phenomena, referred to as chaotic nonlinear systems .

In 1960, Professor Edward N. Lorenz in the Department of Meteorology
at MIT decided to rerun an experiment with a simplified atmospheric
model in order to extend his “weather forecast” farther out into the
future. To his surprise, he found that he was unable to duplicate his
previous forecast. Even though the code and the prescribed initial
conditions in the two experiments were identical, the states of the model
in the two simulations were different.

Weather Forecast – Numerical Prediction

Nature, 406, p. 949 (2000 Courtesy of Paul Bourke)
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Introduction to Numerical Weather Prediction (NWP)
Lagrangian Description of Flow

 We follow individual fluid particles (tracers)
 As the particles move their positions and 

velocities change with time
 The physical laws apply directly to each 

particle

Eulerian Description of Flow

 We define a finite space grid
 The properties of each grid cell change 

with time 
 The physical laws are reformulated to 

an Eulerian format
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Introduction to Numerical Weather Prediction (NWP)

 Practically speaking we need at least 10 grid points to describe a physical 
phenomenon.

 For example in order to resolve the development of a 20 km diameter convective 
cloud (Cb) this yields a model grid  resolution of 2 × 2 km

 Sub-grid parameterizations for small scale effects
 Convective parameterization remains the biggest problem in atmospheric models
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Introduction to Numerical Weather Prediction (NWP)
 Most of the important development of primary atmospheric physical 

processes in NWP models was accomplished by 1990
 Currently we describe everything we know about atmospheric processes 

(actually, models have mostly caught up with our ability to observe the 
atmosphere)

 Most important NWP development in past 15-20 years: Cheap computer 
power (PC, Workstations, Supercomputers) and Multi-processing

 Higher resolution improves model topography, coastlines, treatment of 
physical processes 
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 When using coarse resolution (> 10 km), important weather events (e.g., 
thunderstorms) are not simulated explicitly

 Need of “parameterizations”
 If a parameterization gives an indication that a forecast thunderstorm 

occurred in a 10x10 km grid cell, and it actually happened, it was 
considered a good forecast

 With high resolution (100 m), if a thunderstorm is forecast to occur 200m 
west of a road, but it actually occurred 200m east of the road:
• A good forecast?
• Two bad forecasts?

Introduction to Numerical Weather Prediction (NWP)



Forecast Skill



 The initial conditions for modern numerical
weather prediction are based on an array of global
observations, an increasing fraction of which are
remote measurements from radiometers carried
on board satellites.

 In situ observations include surface reports,
radiosonde data, and flight level data from
commercial aircraft. In situ measurements of
pressure, wind, temperature, and moisture are
combined with satellite-derived radiances in
dynamically consistent, multivariate four-
dimensional data assimilation systems.

Nevertheless, there will always remain some degree of uncertainty (or errors) in the initial
conditions and, due to the nonlinearity of atmospheric motions, these errors inevitably amplify with
time. Beyond some threshold forecast interval the forecast fields are, on average, no more like the
observed fields against which they are verified than two randomly chosen observed fields for the
same time of year are like one another. For the extratropical atmosphere this so-called limit of
deterministic predictability is believed to be on the order of 2 weeks.

Initial and boundary conditions – Forecast window



 Forecast models, as well as perturbed initial
conditions, are used to generate different members
of the ensemble.

 At times when the entire hemispheric circulation is
relatively predictable, members of the ensemble do
not diverge noticeably from one another until
relatively far into the forecast.

 Often the errors grow most rapidly over one
particular sector of the hemisphere due to the
presence of local instability in the hemispheric flow
pattern.

 The rate of divergence of the individual members of
the ensemble provides a measure of the credibility
of the forecasts in various sectors of the hemisphere
and the length of the time interval over which the
forecasts can be trusted.

Ensemble Forecasts

Athens, Greece GFS Ensemble, 05 April 2016, 00UTC
Temperature at 850 hPa (in °C) and 6h accumulated 
precipitation (in mm)



 The results are not as easy to interpret as those for
the idealized model based on the Lorenz attractor,
but they are nonetheless informative.

 As in the idealized experiments, the ensemble
forecasts also provide an indication of the range of
atmospheric states that could develop out of the
observed initial conditions.

Ensemble Forecasts

 The mean is considerably smoother because it
represents an average over 50 individual forecasts.

 Some of the individual forecasts, like the one in the
lower left panel, capture the features in the verifying
analysis with remarkable fidelity.

 Unfortunately, there is no way of identifying these
highly skillful forecasts at the time that the ensemble
forecast is made.

ECMWF 7-day ensemble forecasts for a typical winter day.
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WRF-NMM_3.5 WRF-ARW_3.5



Post processing  & Meteorological parameters
Initial field
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Vertical cross section of
 Water vapor mixing ratio (color scale in kg kg-1)
 Liquid condensates mixing ration (red contours in g kg-1)
 Ice condensates mixing ration (white contours in g kg-1)
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FLEXWRF emissions sensitivity (residence time) calculation
for a particle population that was observed at heights
between 2 and 4 km above Athens on 26 May 2014, 12:00
UTC. The colored areas indicate particles from that height
range that were present at heights below 2 km during the
last 5 days thus indicating the possible source areas.

FLEXWRF 48 hours backward-trajectories ending at
Finokalia on 01 July 2014, 12:00 UTC. Arrival heights
are 0.5 km (solid red), 1 km (dashed blue), 2 km (solid
black), 3 km (dashed red), 4 km (magenta), 7 km
(yellow) and 10 km (dashed black).

Post processing  & Meteorological parameters



 GFS Global Forecast System (previously AVN) – developed by NOAA

 IFS developed by the European Centre for Medium-Range Weather Forecasts

 UM Unified Model developed by the UK Met Office

 GME developed by the German Weather Service, DWD

 ARPEGE developed by the French Weather Service, Météo-France

Global Models



Global Models – GFS 0.25



Global Models / GFS 0.25 zoom



Global Models / GFS 0.25 zoom



 WRF The Weather Research and Forecasting model was developed cooperatively by NCEP, NCAR, and 

the meteorological research community. WRF has several configurations, including:

 WRF-NMM is the primary short-term weather forecast model for the U.S., replacing the Eta 

model. Beginning in May 2006, NCEP began to use the WRF-NMM as the operational NAM.

 WRF-ARW Advanced Research WRF developed primarily at the U.S. National Center for 

Atmospheric Research (NCAR)

 RAMS the Regional Atmospheric Modeling System developed at Colorado State University for 

numerical simulations of atmospheric meteorology and other environmental phenomena on scales 

from meters to hundreds of kilometers - now supported in the public domain

 MM5 The Fifth Generation Penn State/NCAR Mesoscale Model

 ALADIN The high-resolution limited-area hydrostatic and non-hydrostatic model developed and 

operated by several European and North African countries under the leadership of Météo-France

 COSMO The COSMO Model, formerly known as LM, aLMo or LAMI, is a limited-area non-hydrostatic 

model developed within the framework of the Consortium for Small-Scale Modelling (Germany, 

Switzerland, Italy, Greece, Poland, Romania, and Russia).

Regional Models



Post Processing Maps



Post Processing Maps



http://oiswww.eumetsat.org/IPPS/html/MSG/RGB/DUST/

Comparisons with EUMETSAT MSG



Comparisons with EUMETSAT MSG and CALIPSO/CALIOP

Solomos et al., ACP 2017



Binietoglou et al., AMT, 2015

Comparisons with ground LIDARS and LIRIC retrievals



Compare with satellite images

https://worldview.earthdata.nasa.gov/



Compare with satellite images



Compare with satellite images

http://eumetview.eumetsat.int/mapviewer/



Compare with satellite images

http://www.jma.go.jp/en/gms/



Compare with satellite images

http://giovanni.sci.gsfc.nasa.gov/giovanni/



Compare with satellite images

http://www.bom.gov.au/australia/charts/archive/



Compare with surface stations

https://gis.ncdc.noaa.gov/maps/ncei/summaries/daily

• Download station measurements
• Tip – show stations with zero precipitation
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Smoke - biomass burning

Biomass burning (biochemical process)

aerosols

gases

Smoke risk for 
inhabited areas

Climate change 
(tropical fires release 
30% of global  CO2)

MODIS 24 September 2015

MODIS July 2015

Satellite detection of fire hot-
spots and biomass smoke
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Smoke - biomass burning

Rosenfeld et al., 2007

Plume rise 
 PBL
 Pyroconvection
 Injection of smoke in upper 

troposphere / lower 
stratosphere

 Generation of gravity waves 
enhances mixing at the top 
of the pyroCb

 Residence time of smoke in 
the atmosphere increases 
dramatically

AVHRR reflectance (a) and brightness temperature (b) 
images of pyroconvection (overshooting – gravity waves)
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Smoke - biomass burning

High PBL top - Deep mixing layer Low PBL top - Temperature Inversion
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Volcanic emissions

MODIS visible image MODIS infrared image
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Volcanic emissions

Volcanic Eruptions
aerosols

gases

Health risk for 
inhabited areas

Climate change 
considerations

Emissions
 H2O Water vapor (climate)
 CO2 Carbon Dioxide (health – climate)
 SO2 Sulfur Dioxide (health – climate 

effect (sulphates, ozone), satellite proxy)
 H2S - Hydrogen Sulfide (toxic)
 HF, HCl, HBr - Hydrogen Halides (toxic)

Human nose is the most sensitive instrument 
to H2S (0.000001% H2S) - rotten egg smell.

Alaska, 1990
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Volcanic emissions

The AURA Ozone Monitoring Instrument 
(OMI) (daytime detections of SO2)
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Volcanic emissions

Global Ozone Monitoring Experiment (GOME- 2)
 UV/visible spectrometer covering the 240–790 

nm wavelength interval with a spectral resolution 
of 0.2–0.5 nm 

 On board the Meteorological Operational 
satellite-A (MetOpA)

 Ground pixel size 80 km × 40 km.

OMI
 Nadir-viewing imaging spectrograph
 Measures atmosphere-backscattered sunlight 

in the ultraviolet-visible range from 270 to 500 
nm with a spectral resolution of about 0.5 nm

 Resolution 13 km × 24 km at nadir

The hyperspectral Infrared Atmospheric Sounding 
Interferometer (IASI)
 Spectral coverage from 645 to 2760 cm-1 , 

resolution 0.5 cm-1

 Onboard MetOp-A
 Resolution 12 km at nadir 

Moderate Resolution Imaging 
Spectroradiometer (MODIS)
 Multispectral instrument on board the Terra 

and Aqua polar satellites
 36 spectral bands from visible to thermal 

infrared
 Spatial resolution varies between 250, 500 

and 1000 m. 

SO2 satellite retrievals
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Volcanic emissions
SO2 satellite retrievals + modelling emissions

Theys et al., 2012, ACP

DU=Dobson Unit=0.01 mm 
thickness at STP
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Data assimilation
Why use remote sensing data in numerical models ?

1. Numerical models solve initial and boundary value problems (differential equations)

2. These conditions must be provided by observation (weather stations, balloons, etc.)

3. Some air-quality models (e.g. dust models) rely on their own forecasts for initial and 

boundary conditions (warm start)

4. Even at the idealized case of a perfect model run, this methodology would imply error 

propagation from numerical diffusion itself

5. For natural hazards such as biomass smoke or volcanic ash there is no other way to 

get initial conditions
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Data assimilation
Data assimilation is an analysis technique in which the observed information is 
accumulated into the model state by taking advantage of consistency 
constraints with laws of time evolution and physical properties.

 sequential assimilation considers only 
observations made in the past (real-
time forecasting systems)

 non-sequential, or retrospective 
assimilation, where observation from 
the future can be used, for instance in 
a reanalysis exercise

 intermittent method, observations are 
processed in small batches (technically 
convenient)

 continuous method, observation batches 
over longer periods are considered, and 
the correction to the analyzed state is 
smooth in time,which is physically more 
realistic

Meteorological Training Course Lecture Series, ECMWF, 2002
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Data assimilation

The need for a statistical approach
 If we have a preliminary estimate of the analysis with a good quality, we do 

not want to replace it by values provided from poor quality observations.
 When going away from an observation, it is not clear how to relax the 

analysis toward the arbitrary state
 An analysis should respect some basic known properties of the true system, 

like smoothness of the fields, or relationship between the variables
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Data assimilation

 The data that can go into the analysis system comprises the observations, the first guess and the 
known physical properties of the system.

 All pieces of data are important sources of information.
 There are errors in the model and in the observations, so we can never be sure which one to trust.
 However we can look for a strategy that minimizes on average the difference between the analysis and 

the truth.
 To design an algorithm that does this automatically, it is necessary to represent mathematically the 

uncertainty of the data. 
 This uncertainty can be measured by calibrating (or by assuming) their error statistics using 

probabilistic concepts. 
 Then the analysis algorithm can be designed on a formal requirement that in the average the analysis 

errors must be minimal.
 This will allow us to write the analysis as an optimization problem.
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Data assimilation

 State vector x = a column matrix that represents the atmospheric state of the 
model

 True state xt= the best possible representation of reality 
 First guess (background) state xb= The a priori or background estimate of the true 

state before the analysis is carried out
 Analysis xa = This is what we are looking for, xa=xb+δx
 Space Operator H = Interpolation from model space to observation space
 Vector of errors εb= before doing an analysis, there is one and only one vector of 

errors that separates  xb from the true state, εb=xb-xt

The analysis problem is to find a correction δx such that xa is as close as possible to xt

Why is it not possible to precisely represent reality ?
Representativeness errors due to model discretization
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Data assimilation
We don’t want to know the errors but we need to know their statistics!

 Given a background field just before doing an analysis, there is one and only one vector of errors (εb)

that separates it from the true state: εb=xb-xt

 If we were able to repeat each analysis experiment a large number of times, under exactly the same 

conditions, but with different realizations of errors generated by unknown causes, εb would be 

different each time. 

 We calculate statistics such as averages, variances and histograms of frequencies of error and expect 

the statistics to converge to values which depend only on the physical processes responsible for the 

errors. 

 The best information about the distribution of error is given by the probability density function PDF

 From this function one can derive all statistics, including the average (or expectation) and the 

variances
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Data assimilation
Error variables

 background errors: εb=xb-xt ,   average ,   covariance 

The difference between the background state vector and its true value. They do not include 

discretization errors.

 observation (radiance) errors: εo=y-H(xt), average ,   covariance R

They contain errors in the observation process (instrumental errors, because the reported 

value is not a perfect image of reality), errors in the design of the operator , and 

representativeness errors

• analysis errors: εa=xa-xt , of average 

They are the estimation errors of the analysis state, which is what we want to minimize

The averages of errors are called biases and they are the sign of a systematic problem in the 

assimilating system: a model drift, or a bias in the observations, or a systematic error in the 

way they are used.



Remote sensing for assimilation and validation of dust forecasts

Data assimilation
Best Linear Unbiased Estimator (BLUE)
How the least-squares estimation can be simplified to yield the most common 
algorithms used nowadays in meteorology and oceanography.

The BLUE analysis is equivalently obtained as a solution to the variational
optimization problem:

Xa= ArgMin(J)

J(x) = (x - xb)T B-1 (x - xb) + (y - H[x] )T R-1 ( y - H[x] ) , 3D-var

J(x) = (x - xb)T B-1 (x - xb) + (y - H[x] )T R-1 ( y - H[x] ) + 
(H2[x] (M(x)) − y2 )T R2

-1 (H2[x] (M(xa ) − y2 ) , 4D-var

J = cost function, M is model forecast (t1  -> t2)

3D-var 4D-var  assimilation techniques are based on the minimization of J
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Data assimilation

 3D-VAR assumes all observations are at analysis time
 4D-VAR incorporates also the time dimension



Remote sensing for assimilation and validation of dust forecasts

Data assimilation
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Data assimilation

Satellite data must be treated carefully 
 Important to be aware of instrument characteristics before attempting to use data. 
 No current component of observing system is used “perfectly” or “as well as possible”. 
 Computational expense plays important role in design of system. 
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Data assimilation

 Satellite instruments do not directly measure the atmospheric state 
 Instead they measure radiation emitted by and/or transmitted by the 

atmosphere that is representative of the atmospheric state
 But NWP need atmospheric variables



Remote sensing for assimilation and validation of dust forecasts

Data assimilation
Quality Control

 The quality control step may be the most important aspect of satellite data 
assimilation. 

 Most problems with satellite data come from 4 sources: 
1. Instrument problems. 
2. Clouds and precipitation simulation errors. 
3. Surface emissivity simulation errors. 
4. Processing errors (e.g., wrong height assignment, incorrect tracking, etc). 

 IR cannot see through most clouds. 
 Microwave impacted by clouds and precipitation but signal is smaller from thinner 

clouds. 
 Surface emissivity and temperature characteristics not well known for 

land/snow/ice. 
 Also makes detection of clouds/precip. more difficult over these surfaces. 
 Error distribution may be asymmetric due to clouds and processing errors. 
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Data assimilation
Bias Correction

 The differences between simulated and observed observations can show significant 
biases. 

 The source of the bias can come from: 
1. Inadequacies in the characterization of the instruments. 
2. Deficiencies in the forward models. 
3. Errors in processing data. 
4. Biases in the background. 

 Except when the bias is due to the background, we would like to remove these biases.
 Currently bias correction only applied to a few data sets: 

1. Radiances. 
2. Radiosonde data (radiation correction and moisture). 
3. Aircraft data. 

 For radiances, biases can be much larger than signal. Essential to bias correct the data. 
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Data assimilation
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Data assimilation

Observational Errors 

 Observation errors specified based on 
instrument errors and statistics 

 Generally for satellite data, variances are 
specified a bit large since the correlated 
errors (from RT and instrument errors) are 
not well known. 

 Observation errors are also generally 
specified as being uncorrelated spectrally, 
but efforts are being made to determine 
the off-diagonal components of the 
observation error covariance matrix. IASI Observation Errors in ECMWF System 
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Data assimilation

Thinning 
–Reducing spatial or spectral resolution by selecting a reduced set of locations or channels. 
–Can include “intelligent thinning” to use better observation. 

Superobbing
–Reducing spatial or spectral resolution by combining locations or channels. 
–Can reduce noise. 
–Includes reconstructed radiances. 
–Can include higher moments contained in data.

Both can be used to address 3 problems: 
–Redundancy in data. 
–Reduce correlated error. 
–Reduce computational expense. 
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Data assimilation

MTSAT Infrared image of typhoon 
MATSA approaching Taiwanese 
and Chinese coast on August 4, 
2005, 00 UTC. 

4DVar moisture increments with rain 
assimilation (colors in %), 900 hPa wind 
increments (white arrows), surface 
pressure (isolines), ECMWF model
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Data assimilation

Dust Optical Depth from the UK Met Office 
SEVIRI retrieval algorithm 

The U.K. Met Office MSG dust product 
shows an estimation of the dust optical 
thickness retrieved from empirical 
relationship between SEVIRI infrared (10.8 
µm) radiance and aerosol optical depth at 
550nm.
It is generated by transforming original 
retrievals to regularly-spaced grids (0.18 
degree) using simple average method.

Brindley, H. E., and J. E. Russell (2009), JGR 
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Satellite data assimilation
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Data assimilation
Assimilation of dust retrievals from a geostationary sensor (MSG-
SEVIRI) in atmospheric dust models (NMM-DREAM)
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 Fire Radiative Power (FRP) is a 
measure of fire intensity 

 Assimilation of FRP in smoke 
dispersion models is used for the 
calculation of (i) smoke injection 
heights and (ii) smoke emission rates.

Data assimilation
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WRF
Meteorological model

Windninja
Computational 
Fluid Dynamics 

model (CFD)

Fire growth model

Real-time fire monitoring

Data assimilation
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Data assimilation

(
a)


